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Abstract  A single stack cold plate used for the cooling of electronic components is analysed under 
steady state conditions using finite element method where Galerkin’s weighted residual method is 
employed. A simple one-dimensional fin theory is applied to the descretised elements during the 
analysis. The formulation of the analysis is more general and takes into account the heat losses 
from the top and bottom surfaces of the stack. First, a single unit cell without heat losses is 
analysed whose results compare well with those available in the literature. Then the analyses of the 
assembly of several unit cells with different heat losses are carried out. These results show that the 
single unit cell can be considered as the representative of the stack only when there are no heat 
losses.  
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INTRODUCTION 

 
   Cold plates are used to cool electronic components 
mounted on the printed circuit board. A cold plate 
consists of an array of rectangular fins, attached 
between two exterior plates. Fluid passes through the 
spaces between the fins, to help increase the rate of heat 
transfer from the fin. A cold plate is called a single stack 
cold plate if there is no splitter plate between the two 
exterior plates; double stack if there is one splitter plate 
and triple stack if there are two splitter plates.  
    
   A stack is a combination of fins connected together. 
Thus, the whole stack is made of repeating arrays of 
fins. The objective of this paper is to generate new and 
additional data, which will be helpful in the design of 
cold plates used for cooling of electronic systems. This 
is achieved by a generalized formulation of the analysis 
of a cold plate, using dimensionless parameters to 
replace the dimensional parameters used in the earlier 
investigations. By non-dimensionalizing the governing 
equation, the analysis is not restricted to a particular set 
of geometry of a stack. The analysis starts by taking a 
single unit cell of the cold plates for the purpose of 
verifying results with those from Pieper and Kraus 

[1998]. In addition to that, several unit cells assembled 
together vertically are analysed using the finite element 
method with and without heat losses at the top and 
bottom of the stack as it happens in reality. Results of 
such analysis will determine if a single unit cell analysis 
is adequate in representing the performance of a stack 
under all operating conditions. 

 
THE GOVERNING EQUATION AND FINITE 

ELEMENT FORMULATION 
 
 

A stack is considered as a combination of fins 
connected together. A simple one-dimensional fintheory 
is therefore applied to the stack under investigation. 

Fig. 1 A single stack cold plate 
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   The governing equation for a steady state, one-
dimensional fin, with conduction and forced convection 
is given as follows: 

( ) 0
2
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=−− ∞TThP

dx
TdkA                  (1) 

where 
A = cross sectional area of the fin perpendicular to the 
direction of conduction, m2 
h = heat transfer coefficient, W/m2 °C 
k = thermal conductivity of the fin material, W/m °C 
P = perimeter of the fin where convection takes place,m 
T = temperature of the fin at a given location, °C 
T∞ = ambient temperature, °C 
x = distance measured from the base of a fin, m 
 
   As a generalisation, the present analysis will be 
carried out using dimensionless parameters. This is 
carried out after a transformation of the field variables 
to their corresponding dimensionless parameters as 
follows: 
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   Thus, equation (1) becomes 
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   M is the governing parameter in the analysis that takes 
into account the variation in h (free convection, mixed 
convection and forced convection including the 
developing flow), the variation in k (different fin 
materials), geometric factor (A/P ratio of the flow 
passage) and finally the distance between theExterior 
plates. Thus the introduction of the parameter M does 
not restrict the present analysis to a particular set of 
geometry. 
 
   The variation of temperature along the fin is assumed 
to be linear as [ ]{ }θ=θ N                   
(7) 
where  
[ ] [ ]XXN −= 1                   (8) 
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θi, θj  = dimensionless temperature at nodes i and j 
respectively. 
 
   By using Galerkin’s method, as explained in Segerlind 
[1984] and Lewis et. al. [1996], the finite element 

 formulation of equation (6) is obtained as 
[ ]{ } { }0=θK                 (10) 
where 
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   The above theory is applied to fin array and single 
stack cold plate. The details of the assembly of the 
element matrices for each case are given in the 
following section. 
 

FIN ARRAY 
 
   In order to verify the present approach, we consider 
the case of a fin array for which solutions are available. 
Mikhailov and Ozisik [1981] modeled a fin array using 
a linear combination of two fundamental solutions to the 
governing differential equation for the one-dimensional 
steady state problem. However, in the present analysis 
each fin can be considered to have more than one 
element. Thus the present finite element analysis is 
more general and can be used for longer fins as well.  
    
   Considering four elements of the fin array (as shown 
in Fig. 2a), the element matrix for element 1 is written 
as 
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where  

1

2
11

1 kA
BhP

M =                 (5a) 

P1 = perimeter of fin 1, m 
B1 = width of fin 1, m 
A1 = cross sectional area of fin 1, m2 

 

b = 6.34 mm 
bs = 1.16 mm 
δ = 0.152 mm  
δs = 0.254 mm 
L = 304.8 mm 

5 

Fig. 2a Geometry and dimensions of a fin array   
            [Mikhailov and Ozisik, 1981] 
Fig. 2b Finite element representation of a fin 
array 

k = 173 W/m K 
h = 56.77 W/m2 K 
q1 = 2.93 W 
q5  = 2.344 W 
T∞ = 10°C 
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   Similarly, the element matrices for elements 2, 3 and 4 
are as follows: 
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where M2, M3 and M4 are defined as in equation 5(a) for 
fins 2, 3 and 4 respectively. 
 
   The global matrix is an assembly of the element 
matrices. After incorporating the heat loadings at node 1 
(q1) and node 5 (q5), the global matrix is given as in 
equation (16). 
 

Table 1 A comparison of steady state excess 
temperature 

No
de 

Excess 
temperature in 
°C (Mikhailov 

and Ozisik, 
1981) 

θ from 
present 
analysis 

Excess 
temperatur

e 
in °C from 

present 
analysis 

1 11.20 2.36 11.16 
2 9.77 2.06 9.74 
3 9.78 2.06 9.76 
4 9.77 2.06 9.74 
5 10.76 2.27 10.72 

 
 Table 1 shows the results of Mikhailov and Ozisik 
[1981]. Present analysis considers eight elements. 
Mikhailov and Ozisik [1981] used excess temperature, 
which is equal to the actual nodal temperature minus the 
ambient temperature. These excess temperatures are 
converted to the non-dimensional values and are shown 
in Table 1 for comparison. 
 
 

   It is clear from Table 1 that there is a close agreement 
between the results of Mikhailov and Ozisik [1981] and 
the present analysis. This confirms that the present 
approach is valid for the assembly of fins. 
 

SINGLE STACK COLD PLATE 
 
   The analysis of a single stack cold plate is presented. 
A single unit cell, being the repeating segments of the 
stack, is considered first. The analysis of this single unit 
cell is carried out under the same operating conditions 
as given by Pieper and Kraus [1998]. Results from the 
present analysis are then compared to those of Pieper 
and Kraus [1998] for the purpose of verification. Next, 
different number of unit cells are considered and 
analysed after having assembled them together 
vertically with and without heat losses from the top and 
the bottom of the assembled unit. Results from such 
analysis are compared to those of Pieper and Kraus 
[1998] and conclusions are drawn. 
 
Analysis of a single unit cell 
Pieper and Kraus [1998] analysed the single stack cold 
plate under the steady state conditions without heat 
losses from the top and the bottom surface of the stack. 
The geometry of a single unit cell is given in Fig. 3a. 
Fig. 3b shows a unit cell, which is discretised into six 
one-dimensional fin elements. 
    
   It may be mentioned here that the heat loading per 
unit cell on either side of the exterior plates are divided 
equally at the nodes of the elements considered. The 
heat loading for the whole stack at the left exterior plate 
is QTL, while the same is represented by QTR for the right 
exterior plate. The heat loadings are non-
dimensionalised with reference to the heat load on the 
left exterior plate, as given in equation (2). The 
reference dimension in equation (3) is the total width of 
the stack. NUC is used as the abbreviation for the 
number of unit cells. NUC = 44.4 and M = 0.55 for the 
case considered in Pieper and Kraus [1998]. The results 
obtained can then be compared to those of Pieper and 
Kraus [1998], who presented the results of excess 
temperatures for a single stack cold plate for different 
heat loadings on the right exterior plate and a constant 
heat loading on the left exterior plate. 
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   Fig. 4 shows the maximum dimensionless 
temperatures on the left (θl) and right (θr) exterior 
plates. The highest value among the three nodes on each 
exterior plate is taken as the representative value. The 
results of Pieper and Kraus [1998] are also shown in Fig 
4. There is a good agreement of results between the 
present analysis and the results reported by Pieper and 
Kraus [1998]. It shows that the present analysis applied 
to the single stack cold plate is correct. 
 
Analysis of stack with varying NUC  
Pieper and Kraus [1998] assumed that if the cold plate is 
made up of more than 20 repeating segments, a single 
segment is adequate for the purpose of analysis. 
Moreover, they neglect the edge effect of the stack. In 
the present analysis, several unit cells of a single stack 
cold plate are assembled in the vertical direction as in 
Fig 3c and analysed for the same operating conditions. 
The purpose of analysing the assembled unit cells is to 
determine whether the assumption made by Pieper and 
Kraus [1998] regarding the analysis based on a single 
cell is correct. Furthermore, the edge effect is brought 
into account by allowing heat losses from the top and 
bottom surface of the stack.  
    
   Analyses of the assembled unit cells of varying 
number with and without heat losses are carried out. 
The heat loss is defined as a percentage of the total heat 
loading at the left exterior plate QTL. Since QTL increases 
proportionally with NUC, the heat loss also increases 

accordingly. This also implies that a heat loss of 10% 
for NUC = 20 is twenty times larger than a heat loss of 
10% for NUC = 1. This definition of heat loss also 
implies that for a fixed NUC, a heat loss of 10% is the 
same irrespective of Q~ . 
 
   Fig. 5 shows different curves of the temperature 
distribution at the left exterior plate for NUC = 1, 5, 20, 
50 and 100 with heat loss (HL) from both ends = 0, 0.1 
and 0.2 and Q~ = 1. In Fig. 5, notations like (HL0)1, 
(HL1)5, … (HL2)1, (HL2)5 etc are used where HL 
stands for the heat loss, the number after HL, (0, 1, 2) 
represents zero loss, 0.1 (10%) loss and 0.2 (20%) loss 
respectively and the subscripts refer to the number of 
unit cells (NUC) considered for the analysis. It is 
observed from the figure that when there is no heat loss 
from both the ends, the temperature distribution is 
uniform throughout irrespective of NUC as shown by 
the curves (HL0)1, (HL0)5, (HL0)20, (HL0)50 and 
(HL0)100. This justifies the assumption made by Pieper 
and Kraus [1998] that a single unit cell is a 

(a) 

Fig. 3 
a Geometry of a unit cell of a single stack cold  
    plate 
b Finite element representation of a unit cell of a   
    single stack cold plate 
c Geometry of the assembly of 5 unit cells of a  
    single stack cold plate 
d Finite element representation of the assembly of  
    5 unit cells of a single stack cold plate 
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representative of the stack and is adequate for the 
purpose of analysis if there is no heat loss. When the 
heat loss equals 0.1, the maximum temperature θl 
obtained for NUC = 1 drops as compared to the earlier 
case (zero heat loss) as can be observed from the curve 
(HL1)1. Results obtained for NUC = 5 and HL = 0.1 
show that there is not much difference in θl as compared 
to that obtained for NUC = 1 and HL = 0.1 (curves 
(HL1)1 and (HL1)5). The same trend is observed when 
calculations are carried out for HL = 0.2. When NUC = 
20, the value of θl is higher than that obtained for NUC 
= 1 or 5 when both heat losses are considered. Similar 
behaviour is observed when NUC is increased to 50. 
The lower temperatures at the ends and the symmetrical 
temperature distributions when the heat loss is 
considered are clearly shown by the different curves in 
Fig. 5. However, analyses with NUC = 100 and HL = 
0.1 and 0.2 reveal that the temperatures of the near 
middle cells are closer to those obtained for the case 
with no heat loss as can be seen from the curves 
(HL1)100, (HL2)100, (HL0)1, (HL0)5, …(HL0)100. 
Furthermore, the curves (HL1)100 and (HL2)100 
representing the temperature variation along the left 
exterior plate for different heat losses are very close to 
each other near the middle cells and differ at other 
locations. These results are not far from expectation. 
From the above analysis, it can be concluded that for 
large NUC (≥100) with heat losses taking place, the 
analysis with a single unit cell at the middle without 
heat loss is adequate to get θl, which will be helpful to 
determine whether the maximum temperature limit θmax 
has been achieved or not. The above analysis also shows 
that a single unit cell analysis with heat loss does not 

represent the conditions of the middle cell of a stack 
having number of repeating segments of unit cell less 
than 100. 
 
   All the above results and discussions were limited to a 
particular value of the dimensionless parameter M = 
0.55 for a single stack cold plate, which corresponds to 
the case of Pieper and Kraus [1998]. In order to present 
a generalized behaviour of the cold plate, analyses for 
different values of M are carried out with and without 
heat losses from the top and bottom surfaces of the 
stack. These analyses have generated new and 
additional data, which will be helpful in the design of 
the cold plate used for the cooling of the electronic 
systems. The results are plotted in terms of the 

maximum dimensionless temperature on the left exterior 
plate θl for different values of M and for two different 
values of heat loading Q~  when the heat loss = 0.2 as 
shown in Fig. 6. The effect of the variation of NUC is 
also shown in the figure. Calculations are also carried 
out for no heat loss and the results are plotted in the 
same figure. Thus Fig. 6 represents a generalized curve 
applicable for any single stack cold plate for Q~  = 1 & 2 
with a heat loss = 0.2. In general, θl for Q~  = 2 is higher 
than that for Q~  = 1 for all the values of 0.25 < M < 2. 
For lower values of M, the difference between the 
values of θl for the two values of Q~  is large but this 
difference reduces for M > 0.5. A single point on each 
curve, corresponding to zero heat loss for the two heat 
loadings, refers to the result presented by Pieper and 
Kraus [1]. 
 
   It is also noticed from Fig. 6 that for Q~  = 2, NUC = 
50 and M > 0.75, θl coincide with those calculated for 
zero heat loss case. Similar observation is noticed from 
the lower curves for Q~  = 1 but beyond a slightly higher 
value of M as compared to that established for Q~  = 2. 
This suggests that for values of M ≥ 0.75 and even with 
a heat loss of 0.2, the results can be obtained from the 
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analysis of a single unit cell without heat loss when 
NUC exceeds 50. 
  
   It is also possible to calculate the temperature 
distribution at the left and right exterior plates if the heat 
loss from the top and bottom of the assembled unit cells 
are different as happens in actual situation. Fig. 7 shows 
such results for the case where NUC = 20, Q~ = 0.33, 
heat loss from the top is 0.2, while heat loss from the 
bottom is varied from 0 to 0.2. When the heat loss at the 
top is larger than at the bottom, temperature drop at the 
top of the cold plate is more than the bottom. When the 
heat losses at both ends are the same, temperature 
distribution is symmetric about the middle of the stack. 
 

CONCLUSIONS 
 
   From the above analysis of the single stack cold plate, 
the following conclusions are drawn: 
 
   1. When there are no heat losses from the top and 
bottom surfaces of the stack, the analysis of a single unit 
cell is adequate to determine the performance of the 
single stack cold plate.  
 
   2. For M ≤ 0.55, anlaysis of the whole stack should be 
carried out when heat losses are to be considered 
otherwise the performance prediction will be different. 
However, it is concluded that for a stack of NUC ≥ 100 
and heat losses being considered, the maximum 
temperature in this case is the same as that obtained 
from the analysis of a single unit cell without heat losses 
under the same heat loadings at the exterior plates. 
  
   3. For higher values of M (>0.75) and heat losses 
being considered, the single unit cell analysis is 
sufficient to get the maximum temperature even when 
NUC ≥ 50. 
 
   4. The expected variation in the results in terms of the 
temperature distribution along the left and right exterior 
plates for heat losses from the top surface being 
different from the bottom surface for a particular heat 
loading and a particular value of M are predicted well.  
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